Braking and Stopping

 Distance

Braking Distance

- When you put your foot on the brake of a car, the car starts to slow down and will eventually stop.
- The distance required to stop is related to the road conditions (friction between tires and road) and the friction within the brakes.
- Different road conditions provide different amounts of friction.
- An icy road will provide less friction than dry asphalt.
- Gravel or dirt move and therefore provide less overall friction.

- Braking distance can be calculated as follows:

$$
d=k v^{2}
$$

Where:

- d is the braking distance
- k is a constant representing road conditions
- smaller k means more friction
- v is the velocity of the car

Example

Calculate the braking distance of a car
\qquad
\qquad traveling at $15 \mathrm{~m} / \mathrm{s}$ on dry pavement.

$$
\mathrm{k}=0.06 \mathrm{~m} / \mathrm{s}
$$

$$
d=k v^{2}
$$

$$
d=(0.06)(15)^{2}
$$

$$
d=13.5 \mathrm{~m}
$$

Reaction Time

- In real life, there is a delay between when \qquad a driver sees the need to stop and when braking begins.
- Reaction time
- During this time, the car continues to move forward at the same speed.
- Newton's first law

Example 2

- A driver's reaction time is 0.75 s . How far does a car with a speed of $15 \mathrm{~m} / \mathrm{s}$ travel during this time?

$$
\begin{aligned}
& d \equiv \stackrel{d}{d t} \\
& d=(15)(0.75) \\
& d=(11.25 \mathrm{~m}
\end{aligned}
$$

- The total distance required to stop should include the distance traveled during the reaction time.

$$
\begin{aligned}
\begin{array}{c}
\text { Total } \\
\text { Dtopping } \\
\text { Distance }
\end{array} & =\begin{array}{c}
\text { Reaction } \\
\text { Distance }
\end{array}+\begin{array}{c}
\text { Braking } \\
\text { Distance }
\end{array} \\
d & =v t v^{2}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 3

- A car is traveling at $15 \mathrm{~m} / \mathrm{s}$ on dry \qquad pavement ($k=0.06 \mathrm{~m} / \mathrm{s}$). The driver's reaction time is 0.75 s . How far does the \qquad car travel while stopping?

Total		
Stopping Distance	Reaction Distance	+Braking Distance
	$d=v t$ $d=(15)(0.75)$ $d=11.25 \mathrm{~m}$	$d=k v^{2}$ $d=(0.06)(15)^{2}$ $d=13.5 \mathrm{~m}$
Total Stopping Distance	$=11.25+13.5=24.75 \mathrm{~m}$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Factors that Influence Stopping Distance

- Speed
- Faster speeds mean longing braking distance
- Friction
- Road conditions
- Reaction time
- Age of driver
- Distracted driver
- Lack of sleep
- Drugs and/or alcohol consumption

